Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124090, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428163

RESUMO

(-)-Epicatechin gallate (ECG) and piceatannol (PIC) are commonly polyphenols with excellent biological activities. ß-Lactoglobulin (BLG) is a food-grade globule protein and its morphologies are sensitive to pH. This study used experimental and computational methods to determine the interaction of single or combined ECG and PIC with BLG at different pHs. The static quenching process was determined through fluorescence and ultraviolet-visible spectroscopy. Compared with ECG, PIC could significantly bind to BLG with higher affinity. Their binding affinity for BLG with different morphologies followed the tendency of monomer > dimer > tetramer. The negative contribution of van der Waals forces, electrostatic interactions, and hydrogen bonds to ΔHo exceeded the positive contribution of hydrophobic interactions in the spontaneous and exothermic process. The reduced binding affinity in the ternary systems demonstrated the competitive binding between ECG and PIC on BLG, and the hinder effect of ECG or PIC was enhanced with increasing pH. Molecular docking studies revealed the same binding sites of ECG and PIC on various conformations of BLG and identical driven forces as thermodynamic results. Tryptophan and tyrosine were the main participators in the BLG + ECG and BLG + PIC systems, respectively. The conformational changes in the binary and ternary systems could be ascertained through synchronous fluorescence, circular dichroism, and dynamic light scattering. Furthermore, the effects of pH and BLG encapsulation on the antioxidant capacity and stability of ECG or PIC were also implemented. ECG or PIC was the most stable in the (BLG + PIC) + ECG system at pH 6.0. This study could clarify the interaction mechanism between ECG/PIC and BLG and elucidate the pH effect on their binding information. The results will provide basic support for their usage in food processing and applications.


Assuntos
Antioxidantes , Catequina/análogos & derivados , Lactoglobulinas , Estilbenos , Antioxidantes/farmacologia , Simulação de Acoplamento Molecular , Lactoglobulinas/química , Dicroísmo Circular , Ligação Proteica
2.
Postgrad Med J ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330496

RESUMO

BACKGROUND: Elderly patients are at increased risk of perioperative morbidity and mortality after conventional on-pump coronary artery bypass grafting (ONCABG). This study was to determine whether such high-risk population would benefit from off-pump coronary artery bypass grafting (OPCABG). METHODS: A retrospective analysis was performed on patients aged 65 years or older who underwent isolated coronary artery bypass grafting for the first time in Wuhan Union Hospital from January 2015 to January 2021. We used propensity score matching to adjust for differences in baseline characteristics between the ONCABG and OPCABG groups. Morbidity and mortality within 30 days after surgery were compared between the two groups. All operations were performed by experienced cardiac surgeons. RESULTS: A total of 511 patients (ONCABG 202, OPCABG 309) were included. After 1:1 matching, the baseline characteristics of the two groups were comparable (ONCABG 173, OPCABG 173). The OPCABG group had higher rate of incomplete revascularization (13.9% vs. 6.9%; P = .035) than the ONCABG group. However, OPCABG reduced the risk of postoperative renal insufficiency (15.0% vs. 30.1%; P = .001) and reoperation for bleeding (0.0% vs. 3.5%; P = .030). There were no significant differences in early postoperative mortality, myocardial infarction, stroke, and other outcomes between the two groups. CONCLUSIONS: OPCABG is an alternative revascularization method for elderly patients. It reduces the risk of early postoperative renal insufficiency and reoperation for bleeding.

3.
J Med Chem ; 67(3): 2031-2048, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38232132

RESUMO

Metastasis is the major obstacle to the survival of cancer patients. Herein, a series of new desloratadine platinum(IV) conjugates with promising antiproliferative and antimetastatic activities were developed and evaluated. The candidate complex caused significant DNA damage and stimulated mitochondrial apoptosis through the Bcl-2/Bax/caspase3 pathway. Then, it suppressed the epithelial-mesenchymal transition (EMT) process in tumors effectively through NMT-1/HPCAL1 and ß-catenin signaling. Subsequently, the angiogenesis was inhibited with the downregulation of key proteins HIF-1α, VEGFA, MMP-9, and CD34. Moreover, the antitumor immunity was effectively aroused by the synergism of EMT reversion and decrease of the histamine level; then, the macrophage polarization from M2- to M1-type and the increase of CD4+ and CD8+ T cells were triggered simultaneously in tumors.


Assuntos
Loratadina/análogos & derivados , Neoplasias , Platina , Humanos , Platina/farmacologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , beta Catenina/metabolismo , Movimento Celular , Transição Epitelial-Mesenquimal , Imunidade , Linhagem Celular Tumoral
4.
Mol Nutr Food Res ; 68(3): e2300602, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38054637

RESUMO

SCOPE: Inflammation and pyroptosis play important roles in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). In this study, we evaluated the therapeutic potential of ketogenic diet (KD) in EAE. METHODS AND RESULTS: The administration of KD reduces demyelination and microglial activation in the spinal cord of EAE mice. Meanwhile, KD decreases the levels of Th1 and Th17 associated cytokines/transcription factors production (T-bet, IFN-γ, RORγt, and IL-17) and increases those of Th2 and Treg cytokines/transcription factors (GATA3, IL-4, Foxp3, and IL-10) in the spinal cord and spleen. Corresponding, KD reduces the expression of chemokines in EAE, which those chemokines associate with T-cell infiltration into central nervous system (CNS). In addition, KD inhibits the GSDMD activation in microglia, oligodendrocyte, CD31+ cells, CCR2+ cells, and T cells in the spinal cord. Moreover, KD significantly decreases the ratios of p-JAK2/JAK2, p-STAT3/STAT3, and p-STAT4/STAT4, as well as GSDMD in EAE mice. CONCLUSIONS: this study demonstrates that KD reduces the activation and differentiation of T cells in the spinal cord and spleen and prevents T cell infiltration into CNS of EAE via modulating the GSDMD and STAT3/4 pathways, suggesting that KD is a potentially effective strategy in the treatment of MS.


Assuntos
Dieta Cetogênica , Encefalomielite Autoimune Experimental , Camundongos , Animais , Células Th1 , Citocinas/metabolismo , Quimiocinas/uso terapêutico , Fatores de Transcrição , Camundongos Endogâmicos C57BL , Células Th17
5.
J Med Chem ; 66(19): 13838-13857, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37752076

RESUMO

In this study, PD-L1 and CYP51 were selected as key dual-target enzymes, which play an important role in the process of fungal proliferation and immune suppression. A series of novel bifonazole dual-target compounds were designed through the method of fragment combination. Their chemical structure was synthesized, characterized, and evaluated. Among them, the compounds (10c-1, 14a-2, 17c-2) exhibited excellent antifungal and antidrug-resistant fungal activity in vitro. In particular, the preferred compound 14a-2 with high-efficiency dual-target inhibitor ability could block the fungal proliferation and activate the organism's immune efficacy. Moreover, the corresponding covalent organic framework carrier was also successfully constructed to improve its bioavailability. This significantly accelerated the body's recovery process from fungal infection in vivo. In summary, this study expanded the scientific frontier of antifungal drugs and provided a feasible candidate pathway for clinical treatment of fungal infections.


Assuntos
Antifúngicos , Estruturas Metalorgânicas , Antifúngicos/química , Estruturas Metalorgânicas/metabolismo , Candida albicans , Testes de Sensibilidade Microbiana
6.
Dalton Trans ; 52(37): 13097-13109, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37664893

RESUMO

The development of novel anticancer drugs with antiproliferative and antimetastatic activities is of great importance in the pharmaceutical field. Herein, a series of ligustrazine (LSZ) platinum(IV) complexes with chemotherapeutic and immunotherapeutic effects were designed, prepared and evaluated as antitumor agents for the first time. Complex 4 with potent antitumor activities both in vitro and in vivo was screened out as a candidate. Notably, it displays significantly more effective anti-metastatic activities than the platinum(II) drugs cisplatin and oxaliplatin. Mechanism detection discloses that it causes serious DNA damage and increases the expression of γ-H2AX and P53. Then, the apoptosis of tumor cells is promoted by activating the mitochondrial apoptotic pathway Bcl-2/Bax/caspase-3 and causing autophagy via modulating LC3-I/II and P62 expression. Furthermore, the immune therapeutic responses are significantly elevated by blocking HIF-1α, ERK 1/2 and COX-2 pathways to reduce PD-L1 expression, and further increasing CD3+ and CD8+ T cells to elevate T cell immunity in tumors. Tumor metastasis is blocked by the synergistic functions of DNA damage, hypoxia modulation and immune activation.


Assuntos
Linfócitos T CD8-Positivos , Platina , Platina/farmacologia , Pirazinas/farmacologia , Imunoterapia
7.
J Med Chem ; 66(18): 13007-13027, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37705322

RESUMO

Dual-target (CYP51/PD-L1) plays an important role in the process of fungal proliferation and immune suppression. A series of novel quinazoline compounds with dual-target inhibition function was constructed using the skeleton growth method, and their structures were synthesized, characterized, and evaluated. Among them, the perfected compounds (L11, L20, L21) were selected for further study, which exhibited remarkable biological activity against different fungal strains (MIC50, 0.25-2.0 µg/mL) in vitro. On the one hand, these compounds inhibited CYP51 activity, induced ROS aggregation, and mitochondrial damage; this ultimately caused fungal lysis and death. On the other hand, they also effectively activated the body's immune ability by blocking the interaction between PD-L1 and PD-1, slowed down the inflammatory reaction, and accelerated the recovery process of fungal infections.

8.
Environ Sci Pollut Res Int ; 30(48): 106671-106686, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37733202

RESUMO

Widely used agricultural greenhouses are critical in the development of facility agriculture because of not only their huge capacity in food and vegetable supplies, but also their environmental and climatic effects. Therefore, it is important to obtain the spatial distribution of agricultural greenhouses for agricultural production, policy making, and even environmental protection. Remote sensing technologies have been widely used in greenhouse extraction mainly in small or local regions, while large-scale and high-resolution (~ 1-m) greenhouse extraction is still lacking. In this study, agricultural greenhouses in an important agricultural province (Shandong, China) are extracted by the combination of high-resolution remote sensing images from Google Earth and deep learning algorithm with high accuracy (94.04% for mean intersection over union over test set). The results demonstrated that the agricultural greenhouses cover an area of 1755.3 km2, accounting for 1.11% of the total province and 2.31% of total cultivated land. The spatial density map of agricultural greenhouses also suggested that the facility agriculture in Shandong has obviously regional aggregation characteristics, which is vulnerable in both environment and economy. The results of this study are useful and meaningful for future agriculture planning and environmental management.


Assuntos
Aprendizado Profundo , Tecnologia de Sensoriamento Remoto , Agricultura/métodos , Verduras , Conservação dos Recursos Naturais , China
9.
Int J Biol Macromol ; 253(Pt 1): 126639, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37657570

RESUMO

Solid dispersions (SDs) possess the potential to enhance the bioavailability of insoluble active pharmaceutical ingredients (APIs) by effectively converting them into amorphous state. However, SDs have a tendency to recrystallize unless appropriate excipients are employed. The objective of this study was to evaluate the ability of hypromellose acetate succinate HF (HPMCAS-HF) and Soluplus® to inhibit the recrystallization of ß-carotene and improve its in vivo bioavailability through the fabrication of ternary ß-carotene solid dispersions (SDs) with the aid of specific surfactant. Due to rapid micellization, the dissolution profiles of ß-carotene SDs based on HPMCAS-HF/Span 20 (5:5, w/w) or Soluplus®/Span 20 (6:4, w/w) combinations exhibited significant improvement, which were almost 7-10 times higher than ß-carotene bulk powder. DSC and PXRD analysis indicated a notable reduction in the crystallinity degree of ß-carotene within the SDs. The stability study demonstrated a half-life of ß-carotene in the SDs exceeding 30 days. Additionally, the in vivo pharmacokinetics analysis confirmed that the cellulose derivatives/surfactant combinations significantly enhanced the bioavailability of ß-carotene by 1.37-fold and 2.3-fold, respectively. Notably, the HPMCAS-HF/Span 20 combination exhibited superior performance. Consequently, the HPMCAS-HF/Span 20 combination held potential for the advancement of an effective drug delivery system for ß-carotene.


Assuntos
Tensoativos , beta Caroteno , Espectroscopia de Infravermelho com Transformada de Fourier , Solubilidade
10.
Polymers (Basel) ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571116

RESUMO

Plant fiber-reinforced polylactic acid (PLA) exhibits excellent mechanical properties and environmental friendliness and, therefore, has a wide range of applications. This study investigated the mechanical properties of three short plant fiber-reinforced PLA composites (flax, jute, and ramie) using mechanical testing and material characterization techniques (SEM, FTIR, and DSC). Additionally, we propose a methodology for predicting the mechanical properties of high-content short plant fiber-reinforced composite materials. Results indicate that flax fibers provide the optimal reinforcement effect due to differences in fiber composition and microstructure. Surface pretreatment of the fibers using alkali and silane coupling agents increases the fiber-matrix interface contact area, improves interface performance, and effectively enhances the mechanical properties of the composite. The mechanical properties of the composites increase with increasing fiber content, reaching the highest value at 40%, which is 38.79% higher than pure PLA. However, further increases in content lead to fiber agglomeration and decreased composite properties. When the content is relatively low (10%), the mechanical properties are degraded because of internal defects in the material, which is 40.42% lower than pure PLA. Through Micro-CT technology, the fiber was reconstructed, and it was found that the fiber was distributed mainly along the direction of injection molding, and the twin-screw process changes the shape and length of the fiber. By introducing the fiber agglomeration factor function and correcting the Halpin-Tsai criterion, the mechanical properties of composite materials with different contents were successfully predicted. Considering the complex stress state of composite materials in actual service processes, a numerical simulation method was established based on transversely isotropic material using the finite element method combined with theoretical analysis. The mechanical properties of high-content short plant fiber-reinforced composite materials were successfully predicted, and the simulation results showed strong agreement with the experimental results.

11.
J Fungi (Basel) ; 9(7)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37504728

RESUMO

Years of outbreaks of woody canker (Cryptosphaeria pullmanensis) in the United States, Iran, and China have resulted in massive economic losses to biological forests and fruit trees. However, only limited information is available on their distribution, and their habitat requirements have not been well evaluated due to a lack of research. In recent years, scientists have utilized the MaxEnt model to estimate the effect of global temperature and specific environmental conditions on species distribution. Using occurrence and high resolution ecological data, we predicted the spatiotemporal distribution of C. pullmanensis under twelve climate change scenarios by applying the MaxEnt model. We identified climatic factors, geography, soil, and land cover that shape their distribution range and determined shifts in their habitat range. Then, we measured the suitable habitat area, the ratio of change in the area of suitable habitat, the expansion and shrinkage of maps under climate change, the direction and distance of range changes from the present to the end of the twenty-first century, and the effect of environmental variables. C. pullmanensis is mostly widespread in high-suitability regions in northwestern China, the majority of Iran, Afghanistan, and Turkey, northern Chile, southwestern Argentina, and the west coast of California in the United States. Under future climatic conditions, climate changes of varied intensities favored the expansion of suitable habitats for C. pullmanensis in China. However, appropriate land areas are diminishing globally. The trend in migration is toward latitudes and elevations that are higher. The estimated area of possible suitability shifted eastward in China. The results of the present study are valuable not only for countries such as Morocco, Spain, Chile, Turkey, Kazakhstan, etc., where the infection has not yet fully spread or been established, but also for nations where the species has been discovered. Authorities should take steps to reduce greenhouse gas emissions in order to restrict the spread of C. pullmanensis. Countries with highly appropriate locations should increase their surveillance, risk assessment, and response capabilities.

12.
Food Funct ; 14(15): 7247-7269, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37466915

RESUMO

Multiple sclerosis (MS) is an autoimmune disorder characterized by demyelination and neurodegeneration in the central nervous system (CNS); severe symptoms lead MS patients to use complementary treatments. Ketogenic diet (KD) shows wide neuroprotective effects, but the precise mechanisms underlying the therapeutic activity of KD in MS are unclear. The present study established a continuous 24 days experimental autoimmune encephalomyelitis (EAE) mouse model with or without KD. The changes in motor function, pathological hallmarks of EAE, the status of microglia, neuroinflammatory response and intracellular signaling pathways in mice were detected by the rotarod test, histological analysis, real-time PCR (RT-PCR) and western blotting. Our results showed that KD could prevent motor deficiency, reduce clinical scores, inhibit demyelination, improve pathological lesions and suppress microglial activation in the spinal cord of EAE mice. Meanwhile, KD shifted microglial polarization toward the protective M2 phenotype and modified the inflammatory milieu by downregulating the production of pro-inflammatory cytokines, including TNF-α, IL-1ß and IL-6, as well as upregulating the release of anti-inflammatory cytokines such as TGF-ß. Furthermore, KD decreased the expression levels of CCL2, CCR2, CCL3, CCR1, CCR5, CXCL10 and CXCR3 in the spinal cord and spleen with reduced monocyte/macrophage infiltration in the CNS. In addition, KD inhibits NLRP3 activation in the microglia, as revealed by the significantly decreased co-expression of NLRP3+ and Iba-1+ in the KD + EAE group. Further studies demonstrated that KD suppresses inflammatory response and M1 microglial polarization by inhibiting the TLR4/MyD88/NF-κB/NLRP3 pathway, the JAK1/STAT1 pathway, HDAC3 and P2X7R activation, as well as up-regulation of JAK3/STAT6.


Assuntos
Dieta Cetogênica , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Esclerose Múltipla/genética , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias , Citocinas/genética , Citocinas/metabolismo , Camundongos Endogâmicos C57BL
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122583, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905740

RESUMO

Chemotherapy-phototherapy (CTPT) combination drugs co-loaded by targeted DNA nanostructures can achieve controlled drug delivery, reduce toxic side effects and overcome multidrug resistance. Herein, we constructed and characterized a DNA tetrahedral nanostructure (MUC1-TD) linked with the targeting aptamer MUC1. The interaction of daunorubicin (DAU)/acridine orange (AO) alone and in combination with MUC1-TD and the influence of the interaction on the cytotoxicity of the drugs were evaluated. Potassium ferrocyanide quenching analysis and DNA melting temperature assays were used to demonstrate the intercalative binding of DAU/AO to MUC1-TD. The interactions of DAU and/or AO with MUC1-TD were analyzed by fluorescence spectroscopy and differential scanning calorimetry. The number of binding sites, binding constant, entropy and enthalpy changes of the binding process were obtained. The binding strength and binding sites of DAU were higher than those of AO. The presence of AO in the ternary system weakened the binding of DAU to MUC1-TD. In vitro cytotoxicity studies demonstrated that the loading of MUC1-TD augmented the inhibitory effects of DAU and AO and the synergistic cytotoxic effects of DAU + AO on MCF-7 cells and MCF-7/ADR cells. Cell uptake studies showed that the loading of MUC1-TD was beneficial in promoting the apoptosis of MCF-7/ADR cells due to its enhanced targeting to the nucleus. This study has important guiding significance for the combined application of DAU and AO co-loaded by DNA nanostructures to overcome multidrug resistance.


Assuntos
Antineoplásicos , Daunorrubicina , Daunorrubicina/farmacologia , Daunorrubicina/química , Laranja de Acridina , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , DNA/genética
14.
Colloids Surf B Biointerfaces ; 225: 113267, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36940502

RESUMO

Herein, cyclosporine A loaded liposomes (CsA-Lips) were fabricated aimed at improving the biocompatibility of the ophthalmic formulation and getting rid of the direct contact of ocular tissues with irritant excipients. Response surface methodology was exploited in order to investigate the influence of miscellaneous factors on the key characteristics of CsA-Lips. Ratio of EPC:CsA, ratio of EPC:Chol, and stirring speed were selected as the independent variables, while size, drug-loading content (DL), and drug-loading content (DL) loss rate were applied as the response variables. In case of the maximal lack-of-fit p-value and minimum sequential p-value, quadratic model was regarded as the fittest model to analyze the data. The correlation of independent variables with response variables was described by three-dimension surface figures. Optimized formulation for CsA-Lips was obtained with ratio of EPC:CsA set as 15, ratio of EPC:Chol set as 2, and stirring speed set as 800 rpm. The particle size of CsA-Lips was 129.2 nm after optimalization while their TEM images exhibited spherical unilamellar vesicles with clearly shell-core structure. CsA released more rapidly from CsA-Lips in comparison with self-made emulsion and Restasis®. Besides, minimum cytotoxicity of CsA-Lips was perceived via both MTT method and LDH method, indicating the excellent compatibility of the ophthalmic formulation. Simultaneously, CsA-Lips showed enhanced nonspecific internalization in the cytoplasm with a time-dose-dependent manner. In conclusion, CsA-Lips could be adhibited as the hopeful ophthalmic drug delivery system clinically for dry eye syndrome (DES).


Assuntos
Ciclosporina , Lipossomos , Ciclosporina/farmacologia , Ciclosporina/química , Emulsões/química , Olho , Sistemas de Liberação de Medicamentos , Soluções Oftálmicas/farmacologia , Soluções Oftálmicas/química , Imunossupressores/química
15.
J Med Chem ; 66(5): 3393-3410, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36891739

RESUMO

A series of autophagy-targeted antimetastatic clioquinol (CLQ) platinum(IV) conjugates were designed and prepared by incorporating an autophagy activator CLQ into the platinum(IV) system. Complex 5 with the cisplatin core bearing dual CLQ ligands with potent antitumor properties was screened out as a candidate. More importantly, it displayed potent antimetastatic properties both in vitro and in vivo as expected. Mechanism investigation manifested that complex 5 induced serious DNA damage to increase γ-H2AX and P53 expression and caused mitochondria-mediated apoptosis through the Bcl-2/Bax/caspase3 pathway. Then, it promoted prodeath autophagy by suppressing PI3K/AKT/mTOR signaling and activating the HIF-1α/Beclin1 pathway. The T-cell immunity was elevated by restraining the PD-L1 expression and subsequently increasing CD3+ and CD8+ T cells. Ultimately, metastasis of tumor cells was suppressed by the synergistic effects of DNA damage, autophagy promotion, and immune activation aroused by CLQ platinum(IV) complexes. Key proteins VEGFA, MMP-9, and CD34 tightly associated with angiogenesis and metastasis were downregulated.


Assuntos
Antineoplásicos , Clioquinol , Platina/farmacologia , Clioquinol/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Antineoplásicos/farmacologia , Apoptose , Autofagia , Linhagem Celular Tumoral
16.
Sci Total Environ ; 872: 162229, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36791864

RESUMO

Greenhouses are an important part of modern facility-based agriculture. While creating well-being for human society, greenhouses also bring negative impacts such as air pollution, soil pollution, and water pollution. Therefore, it is of great significance to obtain information such as the area and quantity of greenhouses. It is still a challenging task to find a low-cost, high-efficiency, and easy-to-use method for the dual extraction of greenhouse area and quantity on a large scale. In this study, relatively easy-to-obtain high-resolution Google Earth remote sensing images are used as the experimental data source, and an area and quantity simultaneous extraction framework (AQSEF) is constructed to extract both the area and quantity of greenhouses. The AQSEF uses UNet and YOLO v5 series networks as core operators to complete model training and prediction, and main components such as SWP, OSW&NMS and GCA complete data postprocessing. To evaluate the feasibility of our method, we take Beijing, China, as the research area and select multiple accuracy evaluation indicators in the two branches for accuracy verification. The results show that the mIoU, OA, Kappa, Recall and Precision with the best performance model in the area extraction branch can reach 0.931, 0.987, 0.867, 0.91 and 0.914, respectively. Additionally, the Recall, Precision, AP@0.5 and mAP@0.5: 0.95 values of the best performance model are 0.781, 0.891, 0.812 and 0.509, respectively, in the extraction of the quantity of greenhouses. Finally, in Beijing, the area covered by greenhouses is approximately 85.443 km2, and the quantity of greenhouses is approximately 155,464. With the proposed method, the time consumed for area extraction and quantity extraction is 6.73 h and 12.97 h, respectively. The experimental results show that AQSEF helps to overcome the spatiotemporal diversity of greenhouses and quickly and accurately map a high-spatial-resolution greenhouse distribution product within the research area.

17.
Front Aging Neurosci ; 14: 1075161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533180

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of central nervous system (CNS). Aging is the most significant risk factor for the progression of MS. Dietary modulation (such as ketogenic diet) and caloric restriction, can increase ketone bodies, especially ß-hydroxybutyrate (BHB). Increased BHB has been reported to prevent or improve age-related disease. The present studies were performed to understand the therapeutic effect and potential mechanisms of exogenous BHB in cuprizone (CPZ)-induced demyelinating model. In this study, a continuous 35 days CPZ mouse model with or without BHB was established. The changes of behavior function, pathological hallmarks of CPZ, and intracellular signal pathways in mice were detected by Open feld test, Morris water maze, RT-PCR, immuno-histochemistry, and western blot. The results showed that BHB treatment improved behavioral performance, prevented myelin loss, decreased the activation of astrocyte as well as microglia, and up-regulated the neurotrophin brain-derived neurotrophic factor in both the corpus callosum and hippocampus. Meanwhile, BHB treatment increased the number of MCT1+ cells and APC+ oligodendrocytes. Furthermore, the treatment decreased the expression of HDAC3, PARP1, AIF and TRPA1 which is related to oligodendrocyte (OL) apoptosis in the corpus callosum, accompanied by increased expression of TrkB. This leads to an increased density of doublecortin (DCX)+ neuronal precursor cells and mature NeuN+ neuronal cells in the hippocampus. As a result, BHB treatment effectively promotes the generation of PDGF-Ra+ (oligodendrocyte precursor cells, OPCs), Sox2+ cells and GFAP+ (astrocytes), and decreased the production of GFAP+ TRAP1+ cells, and Oligo2+ TRAP1+ cells in the corpus callosum of mouse brain. Thus, our results demonstrate that BHB treatment efficiently supports OPC differentiation and decreases the OLs apoptosis in CPZ-intoxicated mice, partly by down-regulating the expression of TRPA1 and PARP, which is associated with the inhibition of the p38-MAPK/JNK/JUN pathway and the activation of ERK1/2, PI3K/AKT/mTOR signaling, supporting BHB treatment adjunctive nutritional therapy for the treatment of chronic demyelinating diseases, such as multiple sclerosis (MS).

18.
Dalton Trans ; 52(1): 147-158, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36472127

RESUMO

To develop new chemotherapeutics with anti-metastasis properties, a series of multi-specific niflumic acid (NFA) platinum(IV) complexes with DNA damage, inflammation inhibition, immunity activation, and angiogenesis suppression mechanisms were designed, synthesized and evaluated as novel antitumor agents. The dual NFA platinum(IV) complex with a cisplatin core showed promising antitumor activities both in vitro and in vivo with lower toxicity than platinum(II) drugs and displayed attractive anti-metastasis performance. It caused serious DNA damage and further elevated the expression of γ-H2AX. Furthermore, it promoted apoptosis by activating the mitochondrial apoptotic pathway and autophagy of tumor cells. Moreover, immune response in tumors was significantly improved by increasing CD3+, CD4+ and CD8+ T infiltrating cells. Subsequently, the pathway ERK/HIF-1α/VEGFA associated with angiogenesis was suppressed by the reduced inflammation and elevated immune response, and the density of microvessels marked by CD34 was significantly reduced in tumors. Accordingly, the multi-specific NFA platinum(IV) complexes have great potential to be developed as novel anti-proliferative and anti-metastatic drugs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Platina/farmacologia , Ácido Niflúmico/farmacologia , Compostos Organoplatínicos/farmacologia , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Dano ao DNA , Apoptose , Inflamação , Linhagem Celular Tumoral
19.
J Med Chem ; 65(21): 14916-14937, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36282007

RESUMO

Dual-target drug design was considered as the more reasonable antifungal strategy. In this study, three different series of novel compounds were designed using the skeleton screening and splicing method based on dual-target enzyme features, and their structures were synthesized and characterized. Among them, target compounds 5a-1-2, 14b-1-2, and 14c-2-1 with excellent antifungal activity (0.125-2.0 µg/mL) were selected for the subsequent mechanistic study. On the one hand, these compounds blocked the ergosterol biosynthesis pathway by inhibiting the core enzyme CYP51, which effectively induced rapid accumulation of reactive oxygen species, damaged the mitochondrial function, and eventually led to the occurrence of fungal apoptosis. On the other hand, these compounds also inhibited the inflammatory inducible enzyme cyclooxygenase-2, which further affected the expression of inflammatory factors and body's immune function. In conclusion, this study discovered potential target compounds, which could accelerate the rehabilitation process of the infected region.


Assuntos
Antifúngicos , Desenho de Fármacos , Antifúngicos/química , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...